

School of Engineering

Brain Computer Interfaces for Neurorehabilitation of Sensory and Motor Functions

Dr Aleksandra Vučković

Reader in Rehabilitation Engineering
Codirector Scottish Centre for Innovation in Spinal Cord Injury
University of Glasgow

Aleksandra. Vuckovic @glasgow.ac.uk

June 2022

Brain Computer Interfaces

Brain-Computer Interface (BCI) is a hardware and software communication system that permits cerebral activity alone to control computers or external devices

Applications of Brain Computer Interfaces

Replace

- BCI control of a speller
- BCI control of a wheelchair

Restore

BCI control of hand orthosis

Improve

- Neurorehabilitation of motor function
- Reduction of chronic pain
- Improvement of cognitive functions

Enhance

- Automatic error detection in spaceship control
- Enhanced gaming experience
- Detection of lapses in concentration

Research

• Study brain functions in dynamic conditions

Brain Computer Interfaces

Improve

- Neurorehabilitation of motor function
- Reduction of chronic pain
- Improvement of cognitive functions

Enhance

Enhanced gaming experience

Researcl

Study brain functions in dynamic conditions

Neuromodulation through BCI

Communication though BCI inevitably requires neuromodulation

- Neuromodulation to control an external device where a lasting effect on brain activity is not the goal of the BCI application
 - Speller
 - Wheelchair control

Neuromodulation through BCI

Communication though BCI inevitably requires neuromodulation

- Neuromodulation to control an external device where a lasting effect on brain activity is not the goal of the BCI application
 - Speller
 - Wheelchair control
- Neuromodulation to control an external device where a lasting effect on brain activity is the goal of the BCI application
 - Verbalised strategy e.g. motor rehabilitation
 - Non verbalised strategy operant conditioning e.g. neurofeedback

Neurofeedback Through Operant Conditioning

- Operant conditioning process by which humans and animals learn to behave in such a way as to obtain rewards and avoid punishments (Skinner)
- In operant conditioning, a person associates a voluntary behaviour and a consequence

Neurofeedback

Neurofeedback is a subtype of biofeedback through which a person learns how to regulate selected features of brain activity at will.

Neurofeedback Applications

- Attention Deficit Hyperactivity Disorder
- Epilepsy
- Chronic pain
- Insomnia
- Depression
- Memory
- "Peak functions" in healthy people

Neurofeedback for Neuropathic Pain Treatment in People with Spinal Cord Inquiry

Background: Spinal Cord Injury

- Paraplegia and tetraplegia
- Injury affects both spinal cord and brain
- Loss of motor functions is a primary consequence of SCI
- Central neuropathic pain is a secondary consequence of SCI

Central Neuropathic Pain (CNP)

- Central Neuropathic Pain (CNP) is caused by a lesion or a disease of the somatosensory system (Jensen et al. 2011 Pain)
- NP develops some time (even years) after the injury
- Feels as if coming from the body, generated in the brain (phantom pain)

EEG markers of Central Neuropathic Pain

Spinal Cord Injured patients with CNP have

- Increased theta and beta band, decreased alpha band activity
- Dominant alpha frequency reduced, EO/EC reduced
- More intense ERD during imagined movements

Cortical responses during imagined tapping

Neurofeedback Clinical Results

- Two pilot studies with 20 people, one at clinic and other at patients' homes (Clin Neurophsiol 2016, Front Neurosci 2018)
- 75% patients significantly reduced pain
- In 40% clinically significant reduction of pain
- Could practice neurofeedback strategy without device
- Learning neurofeedback related to self-efficacy and affect (Sci Report 2022 accepted)

Modulation of EEG During Neurofeedback

- Training to increase alpha and decreased theta and beta band power from one electrode only (C4)
- Wide-spread increase of the alpha rhythm, over the sensory-motor area

BA13 orbitofrontal

BA23 posterior

Changes in brain activity after 40 neurofeedback sessions (averaged over 5 participants)

BA34 superior temporal gyrus cingulate cortex Hassan et al. 2015 BMC Neurology

Conclusions and Future Work

- Neurofeedback reduced pain with efficacy similar to gabapentin
- Potentially patient self-managed therapy
- Long term changes in brain activity
- Unlike medication, no side effect
- Non-curable condition
- Recent meta analysis support evidence of neurofeedback treatment of pain (Patel Eur Jour Pain 2020)

Conclusions and Future Work

- Neurofeedback reduced pain with efficacy similar to gabapentin
- Potentially patient self managed therapy
- Log term changes in brain activity
- Non curable condition
- Recent meta analysis support evidence of neurofeedback treatment of pain (Patel Eur Jour Pain 2020)

Future Work

- Testing neurofeedback protocol on patients with different causes of neuropathic pain (collaboration with Singapore Institute of Technology)
- Combining neurofeedback with other neuromodulatory therapies of pain for closed loop systems for community use (MRC Neurotechnology Network grant)
- Neurofeedback for other neurological problems?

Brain Computer Interface Controlled Functional Electrical Stimulation for Hand Therapy

BCI based on movement imagination/movement attempt

- BCI detects brain wave features related to a specific movement using spatial-frequency-time information
- Real and imagined/attempted movements activate similar areas of the brain

Source: TU Graz

BCI-FES

- Thinking of movement results in characteristic EEG pattern that is recognised by BCI and used to activate hand muscles
- Closing sensory-motor loop results in strengthening of remaining motor pathways

BCI is conditioning the motor cortex prior to FES

Therapy sessions

Active Group BCI&FES (N=7)

- Visual feedback
- Motor attempt controlled FES

Passive group FES only (N=5)

Same amount of FES automatically activated

Results: Neurological Recovery

- Significant improvement in muscle strength in BCI-FES group only
- Event related desynchronisation (ERD) in BCI-FES group
- Lateralisation;
- Normalisation of wide spread activity;
- Shift from parietal to central region;

ERS/ERD scalp maps, motor attempt of the left hand, 12-16 Hz

Related Studies

- Usability study exploring transfer of knowledge (8 SCI patients& caregivers couples and 4 therapist) (Neuro Eng Rehab 2021)
- Short-term priming effect of uni and bimanual BCI FES (10 stroke patients, 10 able-bodied older and 10 able-bodied younger volunteers) (Clin Neurophysiol 2021)
- BCI –FES as priming therapy prior to physiotherapy (ongoing)

Conclusions and Future Work

- Motor imagination supported with BCI results in cortical reorganisation indicative of motor recovery
- BCI with FES has larger effect on muscle strength than FES alone
- Caregivers can learn to setup BCI-FES and deliver therapy
- Single 30 min BCI-FES session produces measurable changes in brain activity in stroke patients and healthy people
- Bimanual BCI-FES in stroke patients does not supress the activity of the affected side and could be used as a therapy

Future

BCI-FES for rehabilitation of walking

•QENSIU: Dr Mariel Purcell, Mr Matthew Fraser, Mr David Allan, Ms Leslie Wallace, Ms Jennifer Cloughley

•University of Glasgow: Dr Bethel Osuagwu, Dr Manaf Kadum Husein AlTaleb, Dr Anna Zulauf Czaja, Dr Muhammed Abul Hasan, Dr Muhammed Jajrees, Miss Radha Kumari

